Integer value of expression with radicals.

Find all nonnegative real numbers x for which

$$
\sqrt[3]{13+\sqrt{x}}+\sqrt[3]{13-\sqrt{x}}
$$

is an integer.

Solution by Arkady Alt, San Jose, California, USA.

Let $t:=\sqrt[3]{13+\sqrt{x}}+\sqrt[3]{13-\sqrt{x}}$. Then the problem is:
Find all nonnegative real numbers x for which $t=\sqrt[3]{13+\sqrt{x}}+\sqrt[3]{13-\sqrt{x}} \in \mathbb{Z}$.
We have $t=\sqrt[3]{13+\sqrt{x}}+\sqrt[3]{13-\sqrt{x}} \Leftrightarrow t^{3}=26+3 t \sqrt[3]{13+\sqrt{x}} \cdot \sqrt[3]{13-\sqrt{x}} \Leftrightarrow$ $t^{3}=26+3 t \sqrt[3]{13^{2}-x} \Leftrightarrow\left(\frac{t^{3}-26}{3 t}\right)^{3}=13^{2}-x \Leftrightarrow$
(1) $x=13^{2}-\left(\frac{t^{3}-26}{3 t}\right)^{3}$.
where latter equality implies
(2) $\frac{t^{3}-26}{3 t} \leq \sqrt[3]{13^{2}}$

Since for any integer t which satisfies to inequality (2) formula (1) give us value x for which value of expression $\sqrt[3]{13+\sqrt{x}}+\sqrt[3]{13-\sqrt{x}}$ is t then remains to solve inequality (2) in integers.
Consider two cases.

1. $t<0$. Then by replacing t with $-t$ we obtain inequality $\frac{t^{3}+26}{3 t} \leq \sqrt[3]{13^{2}}$, where $t \in \mathbb{N}$.

But since by $\frac{t^{3}+26}{t}=t^{2}+2 \cdot \frac{13}{t} \geq 3 \sqrt[3]{t^{2} \cdot\left(\frac{13}{t}\right)^{2}}=3 \cdot \sqrt[3]{13^{2}}$ and equality occurs iff $t=\sqrt[3]{13} \notin \mathbb{N}$ then $\frac{t^{3}+26}{3 t}>\sqrt[3]{13^{2}}$ for any $t \in \mathbb{N}$.
Thus, there are no integer $t<0$ that satisfies to inequality $\frac{t^{3}-26}{3 t} \leq \sqrt[3]{13^{2}}$.
2. $t>0$. Then $\frac{t^{3}+26}{3 t} \leq \sqrt[3]{13^{2}} \Leftrightarrow t^{3}-3 \cdot \sqrt[3]{13^{2}} t+26 \leq 0$. By replacing u in $u^{3}-3 u-2=(u-2)(u+1)^{2}$ with $t / \sqrt[3]{13}$ we obtain
$t^{3}-3 \cdot \sqrt[3]{13^{2}} t+26=(t+\sqrt[3]{13})^{2}(t-2 \sqrt[3]{13})$
and, therefore, in natural t we have $t^{3}-3 \sqrt[3]{13^{2}} t+26 \leq 0 \Leftrightarrow t \leq 4$ because $\lfloor 2 \sqrt[3]{13}\rfloor=4$.
Thus, only $x=13^{2}-\left(\frac{t^{3}-26}{3 t}\right)^{3}$, where $t=1,2,3,4$ are solutions of the problem, namely $x=13^{2}-\left(\frac{1^{3}-26}{3 \cdot 1}\right)^{3}=\frac{20188}{27}, x=13^{2}-\left(\frac{2^{3}-26}{3 \cdot 2}\right)^{3}=196$, $x=13^{2}-\left(\frac{3^{3}-26}{3 \cdot 3}\right)^{3}=\frac{123200}{729}, x=13^{2}-\left(\frac{4^{3}-26}{3 \cdot 4}\right)^{3}=\frac{29645}{216}$.

